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Abstract
In the present paper we give a review of our recent results in the field of the ‘0.7 anomaly’ and
related phenomena in 1D electron and hole systems. We introduce the concept of a fractional
quantization of the ballistic conductance arising from exchange interaction of the Heisenberg
type between the carrier localized in the region of the quantum point contact and freely
propagating carriers and show that the conductance pattern is qualitatively different for electron
and hole systems.

1. Introduction

Mesoscopic physics is now one of the most rapidly developing
branches of condensed matter physics. Due to the advances
in nanotechnology the experimental realization of quasi-one-
dimensional channels became possible about two decades ago.
In these objects the motion of the carrier (electron or hole)
is confined in two dimensions and is free in the third one.
Depending on the ratio between the length of the channel and
the inelastic scattering length, the transport of the carriers in
these objects can be either of a diffusive or ballistic nature.
In the latter case all inelastic processes accompanied by Joule
losses take place in 2D reservoirs connected with a channel
but not in the channel itself. In this limit the conductance of
the sample is proportional to a conductance quantum G0 =
2e2/h [1, 2],

G = 2
e2

h
N, (1)

where N is the number of open propagating modes. It can
be changed by tuning of the side gate voltage Vg, which
allows experimental observation of the ballistic conductance
staircase [3, 4].

However, in the region of the small electron concentra-
tions when only one propagating mode is open, the experi-
mentally measured ballistic conductance qualitatively deviates
from (1). Namely, a mysterious additional plateau regularly
appears around G ≈ 0.7G0 [5–7].

Although being formally analogical to the plateaux
appearing in the fractional quantum Hall effect [8], the physical
origin of this ‘0.7 anomaly’ is of course very different. Two
experimental facts indicate that it is somehow connected with
spin. First, it was shown that decrease of the concentration
results in a drastic increase of the effective electron g-
factor [5]. Second, the application of the external magnetic
field leads to the smooth evolution of the value of the
conductance on the additional plateau from about 0.7G0 to
0.5G0. The latter value is indeed expected for the case of
Zeeman splitting of the propagating mode.

Later experimental study revealed that fractional quanti-
zation of ballistic conductance is not necessarily universal. It
seems that in long quantum wires the value of the conductance
on the additional plateau is closer to 0.5G0 than to 0.7G0 [9].
It is also probable that situation can be qualitatively different
in the samples with electron and hole types of conductivity.
In the latter case the experimental data existing to date seem
to be rather controversial. The first experimental findings of
the fractional quantization of the ballistic conductance for the
holes indicated that it varies from sample to sample and de-
pends strongly on the offset between the bands of the light and
heavy holes [10]. Other groups reported findings of a fractional
plateau in p-type systems in the same position as it was found
for electrons [11, 12]. The situation now is thus very far from
being clear.

In this review we address theoretically a complex set of
the phenomena related to the ‘0.7 anomaly’ and its analogs
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in ballistic 1D samples with p- and n-types of conductivity.
The paper is organized as follows. In section 2 we present
the theoretical overview of the various theoretical models. In
section 3 we introduce the concept of fractional quantization of
the ballistic conductance arising from the exchange interaction
of the Heisenberg type between localized and propagating
electrons. In section 4 we consider the case of the holes and
show that it can be qualitatively different from the case of the
electrons. The conclusions summarize the main results of the
work.

Theoretical overview

Since its first experimental observation the 0.7 anomaly has
represented a challenge for the theorists working in the field
of condensed matter physics. The proposed scenario of its
appearance varied from Wigner lattice formation [13] and
non-Fermi liquid behavior of the quasi-1D electron gas [14]
to electron–phonon interactions [15]. However, although
each of these models was describing some particular aspect
of the phenomenon, a theory which gives a self-consistent
explanation of all relevant experimental facts still does not
exist.

In the present section we give a short overview of the
existing theoretical results which seem most promising to
us and which are related to our concept of a fractional
quantization of ballistic conductance resulting from the
exchange interaction between net spin localized in the region
of a QPC and freely propagating carriers [16].

We start with phenomenological models which attribute
the appearance of the additional plateau to the formation of the
gap between two spin bands in the region of the QPC. Initially
proposed in the work of Bruus et al [17], this concept appeared
to be rather promising in phenomenological description of the
phenomenon and permitted to obtain simple closed expressions
for the conductance as a function of the chemical potential and
temperature. The model of Reilly et al [18–20] is the most
elaborate of the class of the models described above. Contrary
to [17], Reilly assumes that a spin gap is not a constant, but
depends on the side gate voltage Vsg linearly. The model
operates with two parameters. The first one is the capacitance
of the QPC, which governs the dependence of the Fermi energy
of a 1D electron gas on Vg, and the second one is the rate
of the opening of the spin gap with Vsg, γ = d�E↑↓/dVsg.
Depending on these parameters various scenarios for the 0.7
anomaly can be accounted for. At low temperatures the model
predicts the appearance of the additional plateau at 0.5G0

associated with a fully spin polarized propagation mode. The
standard value of the conductance 2e2/h is recuperated when
a decrease of the side gate voltage puts the edge of the other
spin subband below the Fermi level of the 2DEG. The increase
of the temperature leads to the increase of the conductance
at the additional plateau due to the contribution of thermally
excited electrons from the opposite spin band to the current,
which remains almost constant in a small region of Vg due to
the continued opening of the gap. In the case when a spin gap
�E↑↓ is much smaller than the thermal excitation energy kBT
the additional plateau disappears.

A similar result was earlier obtained by one of us [21]
within a phenomenological model of a quantum wire with
partially polarized electron gas. The momentum dependence
of the state occupancy was approximated by a step function
( f is a Fermi function) n(q, T ) = [1 + f (T, ε(q) − μ +
�E↑↓)] f (T, ε(q)− μ) with chemical potential μ determined
by 1D carrier concentration n1D. Assuming that in some range
of n1D one has μ(n1D) − �E↑↓(n1D) = −ξ = const and
restricting consideration to the case of moderate temperatures
μ/kT � 1, the additional conductance plateau appears at

G = e2

h

{
1 + 1

exp(ξ/kT )+ 1

}
. (2)

An increase of the temperature leads to an increase of the
conductance from G = (1/2)G0 to G = (3/4)G0, which
qualitatively corresponds to a stable observation of the unified
0.7 feature.

The origin of the spin gap can be attributed to spontaneous
spin polarization due to the exchange interaction in the regime
of the small carrier concentration. Qualitatively, the effect can
be interpreted as follows. The linear density of the kinetic
energy of 1D electron gas density is proportional to the cube
of the linear concentration n3

1D and reads

ε1D
kin = π2h̄2n3

1D

6mg2
s

, (3)

where gs is the spin factor giving the number of electrons
per unit cell of phase space. Naturally, it is minimal for the
unpolarized gas with gs = 2. On the other hand, the exchange
energy can be estimated as being proportional to εexc ∼
−n2

1D/gs and thus favors spin polarization. The competition
between two terms results in spontaneous polarization in the
region of small concentrations, where the term quadratic in
concentration dominates over the cubic one, and depolarization
in the opposite limit. This corresponds to the well known
Stoner ferromagnetic instability, whose existence was recently
reported experimentally for 2D systems [22].

Using the Hartree–Fock approximation the exchange
interaction energy per unit length of the quasi-1D electron gas
can be estimated as [23]

εexc = − 1

2L

∑
K ,Q<KF

〈K Q|V |QK 〉

≈ 0.28e2

gs
n2

1D + e2

4gs
n2

1D ln

(
n1D R

πgs

)
, (4)

where R and L are the radius of the wire and its length
respectively. Together with (3), this allows to estimate a spin
gap as

�E↑↓ ≈ 2n1De2

[
0.15 − 0.25 ln

(
n1D R

π

)]
− π2h̄2n2

1D

2m
. (5)

The linear concentration can be estimated as a function of
side gate voltage and capacitance c between the gap and 1D
electrodes, n1D = cVsg/e. The first term in (5) describes
the continuous opening of the gap in the region of small
concentrations where exchange interaction dominates. It is
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accounted for in Reilly’s model and allows the theoretical
estimation of his phenomenological parameter γ . On the
contrary, the second term describing the quenching of the spin
gate coming from kinetic energy was neglected.

The exchange-interaction-induced spin gap in infinite
quasi-1D wires was also considered in the numerical density-
functional calculations of Wang and Berggren [24]. In
accordance with qualitative analysis presented above, they
reported a large subband splitting and full spin polarization at
low electron densities. At the same time it was emphasized that
the effect can be partially suppressed if correlation effects were
taken into account (the same is also true for the Hartree–Fock
description considered above).

All phenomenological models have the following two
shortcomings. First, they predict that the value of the
conductance at the split-off plateau is non-universal and can lie
anywhere between 0.5G0 and G0, depending on the parameters
used. Second, the conductance on the additional plateau
decreases with temperature and reaches 0.5G0 when T → 0,
which contradicts the existing experimental data.

To address the experimentally observable temperature
dependence of the 0.7 feature, Yigal Meir and coworkers
proposed a scenario based on many-body Kondo physics [25].
Indeed, the experiments of the Harvard group [26] indicated
certain similarities between conductances in quantum dots
(QDs) in the Kondo regime and in QPCs in the regime of the
‘0.7 anomaly’, namely:

(i) Formation of a sharp conductance peak for the low
temperature regime centered at the Fermi level (zero bias
anomaly, ZBA).

(ii) Universal single parameter scaling of the conductance
with temperature in a wide range of the side gate
voltages with scaling parameter conveniently labeled as
the system’s Kondo temperature TK,

G = 2e2/h[1/2 f (T/TK)+ 1/2]. (6)

The universal function f (T/TK) coincides with those for
QDs in the Kondo regime [27, 28], the only difference
between the two systems being the factors of 1/2 in (6).
It satisfies the following boundary conditions: f (0) = 1
and f (∞) = 0.

(iii) The Zeeman splitting of the zero bias peak under a strong
magnetic field.

Inspired by the experimental observation (ii), which gives
a universal conductance value close to e2/h in the high
temperature limit, Yigal Meir and coworkers proposed to
describe a QPC in the regime of the ‘0.7 anomaly’ by means of
the following model Hamiltonian:

H =
∑

kσ∈L ,R

εkc†
kσ ckσ +

∑
σ

εdσd†
σdσ + Und↑nd↓

+
∑
kσ

[V (1)
k (1 − ndσ )c

†
kσ dσ + V (2)

k ndσ c†
kσ dσ + h.c], (7)

where ckσ correspond to the annihilation of the electron with
a spin σ in the leads and dσ to the annihilation of the electron
bound in QPC region. The couplings V (2)

k , V (1)
k were treated

as energy-dependent step-like functions, describing 0 ↔ 1 and

1 ↔ 2 charge fluctuations in the QPC respectively. Differently
from the original Anderson Hamiltonian in (7), V (2)

k < V (1)
k ,

which reflects the fact that if the QPC contains a single electron
Coulomb repulsion decreases the hybridization between the
QPC and the leads as compared to the case of an empty QPC.
It was argued that at high temperatures the Hamiltonian (7)
should give the conductance G = G0/2, arising from 0 ↔
1 fluctuations, while decrease of the temperature leads to
the Kondo enhancement of the conductance due to 1 ↔
2 fluctuations until its standard value 2e2/h is recovered
at T = 0.

For the purposes of quantitative analysis by applying
the Schrieffer–Wolff transformation [29] Hamiltonian (7) was
mapped into a Kondo-type one with exchange coupling
dependent on hybridization matrix elements V (1,2)

k . These
couplings were then treated perturbatively, which allowed the
qualitative reproduction of the ZBA. At the same time, this
approach fails to reproduce the standard value of the ballistic
conductance at Vds → 0. We believe that this unitary limit
could be further investigated through the Kubo linear response
theory treating exactly the couplings between the bound state
and the reservoirs. To our mind, the other shortcoming of
the approach considered is that the height of the additional
plateau is nonuniversal and strongly depends on the parameters
of the model and a temperature. The model fails to explain
qualitatively why at short QPCs the additional plateau is
observed to be stable around 0.7G0 and not, say, 0.85G0.

It should be also noted that some new experimental results
seem to contradict the main conclusions of a Kondo model.
Namely, Graham and coauthors in their recent paper [30]
reported the absence of ZBA for at least some experimental
configurations. Another experiment done with QDs reported
a stable observation of the anomaly down to extremely low
temperature [31], where according to the predictions of the
model considered above it should disappear. Concluding, the
role of the Kondo correlations in the ‘0.7 anomaly’ still remains
an open question.

The stable observation of the conductance around 0.7G0

got its explanation in the models of the fractional quantization
of the ballistic conductance, based on the interplay between
singlet and triplet propagation channels for a pair of electrons.
The first model of this type was initially proposed by
Flambaum and Kuchiev [32], who considered the transport of
the bound electron pairs through QPC. If exchange interaction
splits the energies of singlet and triplet configurations, the
effective potential barrier seen by a pair in the region of QPC
becomes spin-dependent. If the energy of a triplet state is
lower, there exists a region of the side gate voltages in which
all triplet pairs can pass through QPC while all singlet pairs
are reflected. As in the absence of the external magnetic field
the probability of realization of a triplet state is 3/4 against
1/4 for the singlet one, the value of the conductance in this
region should be 3G0/4. In other hypothetical case, when the
energy of a singlet state lies below the energy of a triplet state,
the situation is inverted and conductance reads G = G0/4.
If bound states containing more then one electron are formed,
the existence of extra fractional plateaux was qualitatively
predicted.
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The weak point of the model of Flambaum and Kuchiev
is that it operates with some hypothetical attraction between
the electrons leading to a formation of a pair. Although such
possibility cannot be completely dismissed a priori, the origin
of this attraction rests unclear, which makes the scenario rather
dubious. However, there exists a modification of the model
based on the interplay of singlet and triplet scattering channels
which does not assume the existence of the attraction between
electrons. It was initially proposed by Rejec et al [33–35] and
assume a formation of the bound single electron state in the
region of the QPC3 which interacts with propagating electrons
via an exchange term of the Heisenberg type. If the energy
of the traveling electron is small enough, one of the electrons
always remains bound after the scattering process [37, 38],
and transmission probabilities can be calculated using the
Landauer–Buttiker formula

GT =0(EF) = 2e2

h

[
1

4
Ts(EF)+ 3

4
Tt(EF)

]
, (8)

where Ts and Tt are transmission coefficients for singlet and
triplet configurations respectively and the coefficients 1/4 and
3/4 reflect their corresponding probabilities of realization.
For finite temperatures, the generalization of the result (8) is
straightforward and reads

G(T, μ) =
∫ ∞

0
GT =0(E)

(
−∂ f (T, E, μ)

∂E

)
dE . (9)

Rejec et al [35] claimed that the effective potential seen by the
propagating electron consists of two barriers with a minimum
at the center of the bulge. It contains resonant quasilevels
for the singlet and triplet configurations, split by exchange
interaction. The resonant tunneling through these levels
corresponds, under certain condition, to the simultaneous
appearance of fractional conductance plateaux with G ∼
(1/4)G0 and G ∼ (3/4)G0. On the other hand, for rectangular
potential barrier only one plateau can be observed, depending
on the sign of the exchange interaction constant [32, 39].

The many-electron correlations, that are similar to
those of the Kondo type [40], lead to the temperature-
dependent renormalization of the exchange interaction
constant. According to the scaling argument of Anderson [41],
in the case of the antiferromagnetic interaction it diverges for
low temperatures, leading to the formation of a Kondo cloud
around the localized magnetic moment. In the ferromagnetic
case the exchange interaction constant goes to zero for T → 0,
thus leading to the quenching of the splitting between singlet
and triplet states and disappearance of the ‘0.7 feature’ at
extremely small temperatures [39].

The possibility of the formation of the state with an
unpaired spin in the region of the QPC was the focus
of a number of theoretical works. The results obtained
using numerical density-functional calculations support the
hypothesis of the formation of either a net spin polarization
in the region of the QPC arising from electron–electron
interactions [42–45], which can serve as a dynamical spin

3 The possibility of localization of the carriers in the region of the QPC was
recently analyzed in experimental work by Yoon et al [36].

filter, or a three-electron antiferromagnetic spin lattice inside
the QPC [25, 46] acting as an effective spin one-half.

It should be noted that there exists experimental
evidence that supports the scenario of single and triplet
channels described above, coming from measurements of
the nonequilibrium current noise in quantum wires and
QPCs [47, 48]. In particular, measurements of the Fano factor
which demonstrate the deviations from Poissonian noise were
shown to be consistent with the ratio 3:1 for the triplet–singlet
statistical weights [49].

We believe that these results allow treatment of the 0.7
anomaly as resulting from the exchange interaction between
a propagating carrier and a magnetic moment J localized in
the contact. Initially formulated in the works of Rejec et al
for the case of a single localized electron with J = 1/2,
this approach can be generalized for the cases of N localized
electrons and holes. In these latter cases the height of the split-
off plateau is a simple fraction of G0 different from the value of
(3/4)G0 predicted in [32, 34]. This allowed us to introduce the
concept of fractional quantization of the ballistic conductance
considered in detail in the next two sections.

2. Fractional quantization of ballistic conductance in
1D electron systems

In this section we introduce the concept of fractional
quantization of the ballistic conductance in 1D electron
systems and present a generalization of the model of Rejec
et al for the case of the spin J > 1/2 localized in the
region of the QPC [16]. The physical realization of this
hypothetical situation could be, for example, a QPC with an
embedded Mn2+ ion with spin J = 5/2. Alternatively, it could
correspond to a QPC containing several localized electrons
in the regime of spontaneous spin polarization. The latter
situation probably corresponds to the case of the long quantum
wires experimentally studied in the work of Reilly et al [9]. As
already mentioned, in this case the additional plateau is formed
around G ≈ 0.5G0 rather than G ≈ 0.7G0.

Firstly, let us consider the situation qualitatively. Having
non-zero magnetic moment J , the localized state affects the
propagating carriers via exchange interaction of the Heisenberg
type. The transmission coefficient through the QPC thus
appears to be spin dependent. Indeed, after entry of the
propagating electron into the QPC, its total spin can be either
S1 = J + 1/2 or S2 = J − 1/2. The number of
possible realizations of configuration 1 is N1 = 2S1 + 1 =
2J + 2 against N2 = 2S2 + 1 = 2J for configuration
2. In the case of the ferromagnetic interaction the energy
of state 1 lies below the energy of state 2, and thus the
potential barrier formed in the region of the QPC is higher
for configuration 2. Consequently, for small enough chemical
potentials the ingoing electron in configuration 1 passes freely
through the QPC while in configuration 2 it is reflected. Then,
only configuration 1 contributes to the conductance. In the
absence of the external magnetic field the probability of its
realization is (J + 1)/(2J + 1) and thus the conductance of
the QPC in the considered regime reads

Gf = J + 1

2J + 1
G0. (10)

4
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Table 1. Possible values of the conductance for different values
of J .

J
Ferromagnetic
interaction, G f

Antiferromagnetic
interaction, Ga

1/2 (3/4)G0 (1/2)G0

1 (2/3)G0 (1/3)G0

3/2 (5/8)G0 (3/8)G0

2 (3/5)G0 (2/5)G0

5/2 (7/12)G0 (5/12)G0

∞ (1/2)G0 (1/2)G0

In contrast, in the case of the antiferromagnetic
interaction, configuration 2 is energetically preferable, and the
conductance should be

Ga = J

2J + 1
G0. (11)

Table 1 summarizes the possible values of the conductance
for different values of J . In the case of the ferromagnetic
interaction, which is likely to be realized in the experiment the
height of the sub-step is seen to decrease with the number of
impaired electrons localized on the contact, and reaches the
value of (1/2)G0 in the limit J → ∞. Besides, the number of
unpaired electrons could be expected to depend on the length
of the QPC, being small for short and large for long contacts.
Thus, for the short contacts one can expect the conductance
to be about 0.7G0 while for the long wires it should attain
the value of 0.5G0. This result corresponds perfectly to the
experimental observations by Reilly et al [9, 18, 19]. The
application of the external magnetic field leads to the spin
polarization of both propagating and localized carriers, thus
transforming the conductance into G0 = e2/h for all values
of J , as seen in the experiment.

It should be noted that, in contrast to [35], in our picture
the coexistence of the two plateaux (e.g. 0.75G0 and 0.25G0)
is forbidden. The difference comes from the difference of the
effective potential seen by the propagating electron. In our case
they represent single rectangular barriers with spin-dependent
height, while in [35] they are considered as resonant double
barrier structures with two quasilevels corresponding to singlet
and triplet configurations split by exchange interaction.

Now, let us calculate the conductance in a more rigorous
way. If the external magnetic field is absent and electrons in the
ingoing and outgoing leads are unpolarized, the density matrix
of the system containing the free propagating electron and the
localized spin before their interaction reads

ρin = ρe ⊗ ρ J = 1
2 (|+1/2〉〈+1/2| + |−1/2〉〈−1/2|)

⊗
(

1

2J + 1

2J∑
m=0

|J − m〉〈J − m|
)
. (12)

There are 4J + 2 possible mutual orientations of the spin
of the propagating and localized electrons. For each of
them after passing the region of the QPC the spin of the
propagating electron can be either conserved or inverted as a
result of exchange interaction, while the total spin of the pair
is conserved. The conductance at zero temperature can be thus
calculated as

G(0, E) = e2

4h(2J + 1)

2J∑
m=0

[|A|− 1
2 ;J−m〉→|− 1

2 ;J−m〉|2

+ |A|− 1
2 ;J−m+1〉→| 1

2 ;J−m〉|2 + |A| 1
2 ;J−m〉→| 1

2 ;J−m〉|2
+ |A| 1

2 ;J−m〉→|− 1
2 ;J−m+1〉|2],

(13)

where A denotes the transmission amplitudes dependent
on the Fermi energy of carriers. The indices of
the transmission amplitudes denote the spin state of
the propagating and localized electrons before and after
interaction. Thus, the amplitudes A|−1/2;J−m〉−→|−1/2;J−m〉 and
A|1/2;J−m〉−→|1/2;J−m〉 describe the spin-conservative passing
of the carrier through the QPC, while A|−1/2;J−m+1〉−→|1/2;J−m〉
and A|1/2;J−m〉−→|−1/2;J−m+1〉 correspond to the passing
accompanied by a spin flip.

To determine the values of the transmission amplitudes in
equation (13), it is necessary to specify the Hamiltonian of the
interaction between the propagating carrier and localized spin
J . In the present work we suppose that they interact only in
the region of length L (dimension of the QPC), whereas in the
other space the interaction is taken to be absent. The model
Hamiltonian can be thus represented in the following form:

H =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h̄2k2

2meff
, x < 0, x > L

h̄2k2

2meff
+ Vdir + Vexσ · J, x ∈ [0, L]

(14)
where meff is an effective mass of the electron, Vdir > 0 is
a matrix element of the direct interaction and Vex is a matrix
element of the exchange interaction. For the ferromagnetic
interaction Vex < 0, while for the antiferromagnetic interaction
Vex > 0. To calculate the spin-dependent transmission
amplitudes one can represent the Hamiltonian in the region of
the QPC using the basis of the 4J + 2 vectors

|ψ1〉 = |1/2; J 〉; · · · |ψ2m〉 = |−1/2; J − (m − 1)〉;
|ψ2m+1〉 = |1/2; J − m〉, · · · |ψ4J+2〉 = |−1/2; −J 〉,

(15)
where m = 1, . . . , 2J . Due to the total spin conservation the
matrix of the Hamiltonian has a block-diagonal form

Hlk = V (1)
l δlk + V (2)

l (δl,k+1 + δl+1,k), (16)

where the parameters V (1,2)
l read

V (1)
1 = V (1)

4J+2 = h̄2k2

2meff
+ Vdir + Vex J,

V (2)
1 = V (2)

4N+2 = 0,

V (1)
2m = h̄2k2

2meff
+ Vdir − Vex(J − m + 1),

V (2)
2m+1 = 0, V (1)

2m+1 = h̄2k2

2meff
+ Vdir + Vex(J − m),

V (2)
2m = Vex

√
m(2J − m + 2).

(17)
This Hamiltonian can be reduced to the diagonal form Hlk =
εlδlk , where

5
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Figure 1. Dependence of the conductance of the QPC on the chemical potential for different values of the net localized spin J . The
parameters of the calculation were taken as follows: the effective mass of the carrier meff = 0.06me, the temperature T = 4 K, the length of
the contact L = L0 J with L0 = 50 nm, Vdir = 1 meV, |Vex| = 0.48 meV, for the (a) ferromagnetic and (b) antiferromagnetic couplings.

ε2m+1ε1 = ε4J+2 = h̄2k2

2meff
+ Vdir + Vex J,

ε2ε2 = h̄2k2

2meff
+ Vdir − Vex(J + 1).

(18)

The value of ε1 given by formula (18) corresponds to the total
spin of the localized plus propagating electron that is equal to
S1 = J + 1/2, while the value of ε2 corresponds to the total
spin S2 = J − 1/2.

To determine the transmission amplitudes, it is necessary
to obtain the general expression for the wavefunction for all
possible mutual orientations of the spin of the propagating
electron and the localized spin. To give an example, let us
consider the case when spin projection of an ingoing electron
is −1/2 while the projection of the localized spin corresponds
to J − m + 1. In this case one has

�I(x) =
(

0
1

)
eikF x + B|− 1

2 ;J−m+1〉→|− 1
2 ;J−m+1〉

(
0
1

)
e−ikF x

+ B|− 1
2 ;J−m+1〉→| 1

2 ;J−m〉

(
1
0

)
e−ikF x , x < 0,

�II(x) = X(1)
m (C+1meik1 x + C−1me−ik1 x)

+ X(2)
m (C+2meik2 x + C−2me−ik2 x), x ∈ [0, L],

�III(x) = A|− 1
2 ;J−m+1〉→|− 1

2 ;J−m+1〉

(
0
1

)
eikF x

+ A|− 1
2 ;J−m+1〉→| 1

2 ;J−m〉

(
1
0

)
eikF x, x > L .

(19)

where the indices I, II and III denote left lead, QPC and right
lead respectively, A and B are transmission and reflection
amplitudes, kF is the Fermi wavenumber of the carrier inside
the leads, the wavenumbers k1 and k2 correspond to the
eigenenergies of the carrier in the region with exchange
interaction (see formulas (18))

k2 =
√

2meff

h̄2 [EF − Vdir − Vex(J + 1)],

k1 =
√

2meff

h̄2
[EF − Vdir + Vex J ],

(20)

and X(1,2)
m are eigenvectors of the mth block of the

Hamiltonian (16)

X(1)
m = 1√

2J + 1

( √
2J − m + 1

−√
m

)
,

X(2)
m = 1√

2J + 1

( √
m√

2J − m + 1

)
.

(21)

Expressions (18)–(20) together with the continuity condition
for the wavefunction and its derivative in the points x = 0 and
L allow the determination of all the transmission amplitudes
present in the formula for the conductance, equation (13).

Figure 1 shows the dependence of the conductance of the
QPC on the chemical potential for different values of the net
localized spin J . One clearly sees the formation of the plateaux
of the ballistic conductance different from 0.75G0 for the case
J > 1/2 in accordance with formulas (10) and (11).

Similar to the case of the single localized electron
considered in section 2, the many-electron correlations should
lead to the temperature-dependent renormalization of Vex and
quenching of the fractional plateaux for small temperatures.

3. Fractional quantization of ballistic conductance in
1D hole systems

As already mentioned in section 1, fractional quantization
of the ballistic conductance can be qualitatively different in
the samples with n- and p-type conductivity. The reason is
a different spin structure of the electrons and holes in such
semiconductor materials as Si, Ge and GaAs. The valence
bands of these bulk semiconductors consist of a heavy hole
band with spins J hh

z = ±3/2, and a light hole band with
spins J lh

z = ±1/2.4 In low dimension due to the effects of
confinement the energetic splitting � appears between these
two bands. It depends on the width of the quantum wire, the
difference of the effective masses of the light and heavy holes,
m lh and mhh, and strains.

The spin-dependent scattering of the localized and freely
propagating holes can be considered in a similar way as

4 We neglect here the third band, which is split off by the exchange interaction
from the bands of the heavy and light holes for k = 0.
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considered for the electrons in the previous section. We
consider the transmission of freely propagating hole states
facing effective potential barriers generated by a spin-
dependent interaction, Vdir + VexJp · Jl, with a localized hole
supposedly present in the region of the QPC. The indices
p and l correspond to the propagating and localized holes
respectively, Vdir > 0 is the matrix element of the direct
interaction and Vex is the matrix element of the exchange
interaction.

Let us first qualitatively understand how the difference
of the spin structure of electrons and holes is reflected in the
patterns of fractional quantization of the ballistic conductance
for them. The spin-dependent part of the effective Hamiltonian
for the holes can be recast as VexJp ·Jl = Vex(J2

T−J2
p−J2

l )/2 =
Vex[JT(JT + 1) − 3(3/2 + 1)]/2. Thus, for the possible
absolute values of the total spin of the hole pair JT = 3, 2, 1, 0
one has the following values of the heights of the spin-
dependent effective potential barriers: Vdir + 9Vex/4, Vdir −
3Vex/4, Vdir − 11Vex/4 and Vdir − 15Vex/4, respectively.
In the case of the ferromagnetic interaction the barrier is
lowest for the largest possible spin, while in the case of
the antiferromagnetic interaction the opposite situation holds.
Now, for an unpolarized initial state (B = 0), the probabilities
of realization of the JT = 3, 2, 1, 0 configurations of the total
spin are 7/16, 5/16, 3/16 and 1/16. Therefore, considering the
hypothetical case of the zero offset between light and heavy
hole bands, � = 0,5 in the ferromagnetic case we expect
to obtain plateaux close to the values (7/16)G0 = 7e2/4h,
(12/16)G0 = 3e2/h and (15/16)G0 = 15e2/4h (given that
the conductance of the noninteracting system is quantized in
the units 4e2/h in this case). In the antiferromagnetic case
plateaux close to e2/4h, e2/h and 9e2/4h are expected.

The situation can be qualitatively different if the offset
between the bands of light and heavy holes is not negligible.
For example, in the limit � → ∞ only the heavy hole band
is available for both localized and propagating carriers. The
conductance of the noninteracting system is thus quantized in
the units 2e2/h as for the case of the electrons. The spins
of the pair of holes can be either parallel or antiparallel with
equal probability of realization. Due to the huge offset between
light and heavy holes the spin-flip processes are blocked6

and we expect just one additional plateau in the fractional
conductance corresponding to G = e2/h. The situation
is thus different from the case of electrons, where spin-flip
processes are allowed and result in an additional plateau at
G = 3e2/2h [32, 33, 35].

Clearly, in the realistic case of finite � the situation goes
beyond the two extreme cases considered above. To account
for it a more detailed analysis of the model is needed. As for
the case of the electrons we suppose that the propagating and

5 It should be noted that the second level of heavy holes 2hh lies usually very
close to the first level of the light holes 1lh and in general cannot be neglected.
However, the presence of the strains usually leads to the lowering of the 1lh,
and thus the situation when it lies closer to 1hh than to 2hh can be realized
(see [50]).
6 Indeed, the spin-flip process of the type +3/2,−3/2 → −3/2,+3/2
always involves light holes as intermediate states, +3/2,−3/2 →
+1/2,−1/2 → −1/2,+1/2 → −3/2,+3/2, and its intensity thus goes to
zero for large offsets �.

localized holes interact only in the region of the QPC having
length L. The Hamiltonian of the system can be thus cast in
the form

H =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h̄2k2

2mhh,lh
, x < 0, x > L

h̄2k2

2mhh,lh
+ Vdir + VexJp · Jl, x ∈ [0, L].

(22)
The initial state of the system before the interaction can be

represented by the following density matrix:

ρin = ρp ⊗ ρl, (23)

ρp,l =
∑

p,l=±3/2,±1/2

αmp,l(T, E)|mp,l〉〈mp,l|, (24)

where ρp and ρl are the density matrices associated with the
free propagating and localized hole states respectively. In the
absence of an external magnetic field we suppose that the
propagating and localized holes are unpolarized, and at T =
0 K one has α±3/2p(0, E) = α±3/2l(0, E) = θ(E − EF)/N ,
α±1/2p(0, E) = α±1/2l(0, E) = θ(E − �− EF)/N , where N
denotes the number of open propagating channels (N = 2 if
EF � E < EF +� and N = 4 if E � EF +�).

In the {|mp,m l〉} basis the Hamiltonian in the region of the
QPC can be represented by a block-diagonal 16 × 16 matrix

H = diag[H (+3); H (+2); H (+1); H (0); H (−1); H (−2); H (−3)],
(25)

with each block associated with a given (superscript) value of
the z-component of the total angular momentum of the pair of
holes, JT,z = mp + m l, having dimension equal to 4 − |JT,z|
and presenting the following matrix elements:

H (±3) = E0
hh + 9

4 Vex, H (±2)
11 = E0

hh + 3
4 Vex +�,

H (±2)
22 = E0

lh + 3
4 Vex +�, H (±2)

12 = 3
2 Vex,

H (±1)
11 = E0

hh − 3
4 Vex +�, H (±1)

22 = E0
lh + 1

4 Vex + 2�,

H (±1)
33 = E0

lh − 3
4 Vex +�, H (±1)

12 = H (±1)
23 = Vex

√
3,

H (0)
11 = H (0)

44 = E0
hh − 9

4 Vex,

H (0)
22 = H (0)

33 = E0
lh − 1

4 Vex + 2�,

H (0)
12 = H (0)

34 = 3
2 Vex, H (0)

23 = 2Vex,

(26)
with Hi j = H ji, E0

hh,lh = h̄2k2

2mhh,lh
+ Vdir and the other matrix

elements equal to zero.
The general expression for the conductance of the system

at zero temperature is given by

G(0, EF) = Ne2

h

∑
mp,ml,m′

p,m
′
l=±3/2,±1/2

αmp(0, EF)αml (0, EF)

× |A(EF)mp,ml→m′
p,m

′
l
|2δmp+ml,m′

p+m′
l
. (27)

The transmission amplitudes, Amp,ml→m′
p,m

′
l
, are determined by

finding the stationary states of the corresponding propagating
hole facing the effective potential barrier described by the

7
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Figure 2. (a) Steps of the quantum conductance staircase versus the chemical potential of carriers in a GaAs QPC for the case of
ferromagnetic exchange interaction between localized and propagating holes. The different lines correspond to three different values of
�(meV) = 0, 0.45, 10. The direct and exchange interaction are estimated as Vex � −0.5 meV and Vdir � 1 meV, the length of the contact as
L = 65 nm and we considered the temperature T = 0.5 K. The vertical gray lines correspond to the values of the heights of the effective
potential barriers, Vdir − 3Vex/4, Vdir − 11Vex/4 and Vdir − 15Vex/4, whereas the dashed horizontal lines correspond to the values 7e2/4h,
3e2/h and 15e2/4h. The inset shows a band structure of the 1D holes. (b) The same for antiferromagnetic interaction, Vex � 0.5 meV, and
supposing Vdir � 2 meV. The dashed horizontal lines correspond to the values e2/4h, e2/h and 9e2/4h.

above H (JT,z) matrices. Considering the conservation of
the total spin represented by the Kronecker δ one gets 44
different transmission amplitudes. In the absence of an external
magnetic field this number can be reduced to 22 due to the spin
inversion invariance.

The transmission amplitudes associated with the initial
states |+ 3

2 ,+ 3
2 〉 and |− 3

2 ,− 3
2 〉, corresponding to the values

JT,z = ±3, are spin conservative and thus determined by
solving the problem of a free particle with kinetic energy
h̄2k2

F/2mhh facing an effective rectangular barrier of width
L and height Vdir + 9

4 Vex. The first non-trivial spin-flip
processes are associated with the states with JT,z = ±2. The
transmission amplitudes in this case, as well as in the cases
of JT,z = ±2,±1, 0, can be determined from a procedure
analogical to one described earlier for the case of the electrons.

Figures 2(a) and (b) show the conductance of a GaAs-
based QPC for various offsets between the bands of light
and heavy holes. For moderate values of �, we observe
the expected plateaux close to the values 7e2/4h, 3e2/h
and 15e2/4h for the ferromagnetic exchange interaction and
the plateaux close to e2/4h, e2/h and 9e2/4h for the
antiferromagnetic exchange interaction, together with the
additional plateau e2/h for the ferromagnetic case. It should
be noted that the quantization of the ballistic conductance
associated with holes in Si and Ge structures is expected
to be qualitatively the same as in GaAs because of the
similarity of the spin structure of the valence band in these
materials. However, it can be qualitatively different in IV–
VI semiconductors such as PbTe, PbSe and PbS, where the
electron–hole symmetry holds.

In addition, we also analyzed the effects of an applied
external magnetic field parallel to the structure growth axis
which produces the Zeeman splitting of the light and heavy
hole bands, H lh,hh = −glh,hh

‖ μb J lh,hh
z B, where μb is the Bohr

magneton and glh,hh
‖ are the parallel components of the effective

g-factor tensors of the light and heavy hole subbands. In
our calculations for GaAs QPCs, we express the g-factors
as glh

‖ = 2κ and ghh
‖ = 6κ , with the Luttinger parameter

Figure 3. Effect of an external magnetic field applied along the
growth axis of a GaAs QPC. Except for the applied magnetic field,
we used the same parameters as figure 2, with � = 0.45 meV. We
see that moderate magnetic fields, B = 2 and 5 T, reduce the relative
width of the steps and change their position. The values of the
effective potential barriers appear as vertical gray lines, while the
energies of the bottom of the subbands, for B = 5 T, appear as
vertical dotted lines. Observe that there is an inversion between the
light and heavy hole subbands because of the difference in their
effective g-factor and the moderate magnetic field.

estimated as κ ∼ −0.6.7 So, the propagating and localized
light and heavy hole subbands will be split with the energies
�lh

Z = −2κμb B and �hh
Z = −18κμbB , respectively. In

this case we do not have invariance with respect to the spin
inversion and the conductance of the system will be given by
the sum of all 44 distinct transmission amplitudes present in
equation (25). The results of our calculation are summarized
in figure 3. The Zeeman splitting in each of the light and
heavy hole subbands, in addition to the � splitting between
them, increases the energy dependence of the initial state’s
probabilities of realization and of the scattering processes.
Therefore, under a moderate magnetic field, the first plateau at
e2/h shows an increase in its width, till the bottom energy of
the second band, while the other ones have their relative widths
reduced and their energy changed. This behavior is illustrated

7 In bulk GaAs κ ∼ −1.2. Quantum wells with widths of order L ∼
30 nm present Luttinger parameter κ ∼ −0.3, see [51]. So, we estimate an
intermediate value for κ in the QPC that we assume.
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by the plotted conductances for B = 2 and 5 T in figure 3.
However, in systems under a stronger external magnetic field
or presenting bigger g-factors, such that the heights of the spin
effective potential barrier are smaller than the splitting between
the different subbands, the conductance of the system tends to
show plateaux at the integer values of e2/h [52].

4. Conclusions

In conclusion, we have shown that the presence of the
uncompensated spin J in the region of the quantum point
contact can result in the fractional quantization of the ballistic
conductance. For samples with n-type conductivity single
localized electrons with spin J = 1/2 result in the appearance
of the single additional plateau with G = 0.75G0. The
increase of J with increase of the length of the contact results
in the decrease of the fractional conductance to 0.5G0. In the
samples with p-type conductivity the situation is much more
complicated due to the complex spin structure of the valence
band in the materials like Si, Ge and GaAs. Depending on the
offset between the bands of the light and heavy holes one or
several fractional plateaux can be observed in this case.
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